
CNT 4714: Servlets – Part 3 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Spring 2011

Introduction to Servlet Technology– Part 3

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/spr2011

CNT 4714: Servlets – Part 3 Page 2 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

• Your Tomcat installation includes the servlet-api.jar

file. This file can be found in the lib folder in Tomcat.

Copy this file into your jdk/jre/lib/ext folder to

allow the java compiler access to the javax.servlet

package.

• Note that your Java set-up may already have this installed

depending on several things, so check your

jdk/jre/lib/ext folder first.

CNT 4714: Servlets – Part 3 Page 3 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

You need this .jar file here

to allow your Java

environment to interface to

the servlet container

provided by Tomcat.

You’ve already needed

this file for Java to

interface to a MySQL

database. This will still

be needed when our

servlets access the

database on the

backend.

CNT 4714: Servlets – Part 3 Page 4 Dr. Mark Llewellyn ©

More XHTML Document Details
• Let’s look a bit closer at what happens in our servlet as it executes.

(See the servlet code on page 22 of servlets-part 2 notes.)

– This line begins the overridden method doGet to respond to the get
requests. In this case, the HttpServletRequest object
parameter represents the client’s request and the
HttpServletResponse object parameter represents the server’s
response to the client.

– If method doGet is unable to handle a client’s request, it throws an
exception of type javax.servlet.ServletException. If
doGet encounters an error during stream processing (when reading
from the client or writing to the client), it throws a
java.io.IOException.

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

CNT 4714: Servlets – Part 3 Page 5 Dr. Mark Llewellyn ©

More XHTML Document Details (cont.)

• The first line above uses the response object’s setContentType

method to specify the content type of the document to be sent as the

response to the client. This enables the client browser to understand and

handle the content it receives from the server. The content type is also

referred to as the MIME (Multipurpose Internet Mail Extension) type of
the data. In this servlet, the content type is text/html to indicate to

the browser that the response is an XHTML document.

• The second line above uses the response object’s getWriter method to

obtain a reference to the PrintWriter object that enables the servlet to

send content to the client. If the response is binary data, like an image,

method getOutputStream would be used to obtain a reference to a

ServletOutputStream object.

response.setContentType("text/html");

PrintWriter out = response.getWriter();

CNT 4714: Servlets – Part 3 Page 6 Dr. Mark Llewellyn ©

More XHTML Document Details (cont.)

• These lines create the XHTML document shown in the box on page 22 of

servlets-part 2 notes.

out.println("<?xml version = \"1.0\"?>");

out.println("<!DOCTYPE html PUBLIC \"- //W3C//DTD " +

"XHTML 1.0 Strict//EN\" \"http://www.w3.org" +

"/TR/xhtml1/DTD/xhtml1-strict.dtd\">");

out.println("<html xmlns =

\"http://www.w3.org/1999/xhtml\">");

// head section of document

out.println("<head>");

out.println("<title>Welcome to Servlets!</title>");

out.println("</head>");

// body section of document

out.println("<body>");

out.println("<h1>Welcome To The World Of Servlet

Technology!</h1>");

out.println("</body>");

// end XHTML document

out.println("</html>");

CNT 4714: Servlets – Part 3 Page 7 Dr. Mark Llewellyn ©

Deploying a Web Application

• Servlets, JSPs and their supporting files are deployed as part of a

Web application.

• Typically, Web applications are deployed in the webapps

subdirectory of Tomcat.

• A Web application has a well-known directory structure in which

all the files that are part of the application reside.

• This directory structure is created by the server administrator in

the webapps directory, or the entire directory structure can be

archived in a Web application archive file known as a WAR file

(ending with a .war file extension – war stands for web

application archive) which is placed in the webapps

directory.

CNT 4714: Servlets – Part 3 Page 8 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• The Web application directory structure contains a context root, which is

the top-level directory for an entire Web application along with several

subdirectories as shown below:

context root – The root directory for the Web application. All the JSPs, HTML

documents, servlets and supporting files such as images and class files reside in

this directory or one of the subdirectories. The name of this directory is specified

by the Web application creator. To provide structure in a Web application,

subdirectories can be placed in the context root. It is common to see an images

subdirectory, for example.

WEB-INF – This subdirectory contains the Web application deployment

descriptor web.xml.

WEB-INF/classes – This subdirectory contains the servlet class files and other

supporting class files used in a Web application. If the classes are part of a

package, the complete package directory structure would begin here.

WEB-INF/lib – This subdirectory contains Java archive (JAR) files. The JAR

files can contain servlet class files and other supporting class files.

CNT 4714: Servlets – Part 3 Page 9 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• As we mentioned in the previous section of notes, Tomcat

will default to a welcome page which is specified in the

web.xml file. The standard default values were shown on

page 9 in the previous set of notes.

• If you do not create one of these files, the default page for a

web application is not very appealing.

CNT 4714: Servlets – Part 3 Page 10 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• Since we would like our clients to see something more appropriate that

the default web application page, you should create your own web

application welcome page.

• This page is simply an HTML page and I’ve created one for the web

applications we create from this point forward. I’ve simply modeled the

page using our course web page as a template. The code for this page is

included on the course code page if you want to use it, but feel free to

design your own.

• I’ll utilize this page as a home page for all of our servlets and JSPs that

we’ll see later in the course.

• I’ve also created a new web application named CNT4714 that we’ll use

for our future servlets and JSPs.

• Now, when the client enters the URL, http://localhost:8080/CNT4714

they will see the home page shown in the next slide.

http://localhost:8080/cop4610
http://localhost:8080/cop4610
http://localhost:8080/cop4610
http://localhost:8080/cop4610
http://localhost:8080/cop4610
http://localhost:8080/cop4610
http://localhost:8080/cop4610

CNT 4714: Servlets – Part 3 Page 11 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 3 Page 12 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• The Web application directory structure that I set up for the

CNT4714 web application looks like the following:

C:\program files\Apache Software Foundation\Tomcat 7.0.8\webapps

…

\CNT4714

index.html

WelcomeServlet.html

WelcomeServlet2.html

\images

\WEB-INF

web.xml

\classes

WelcomeServlet.class

WelcomeServlet2.class

WelcomeServlet.java

WelcomeServlet2.java

The “home page”

HTML “driver” files to initiate

the servlets.

Web application configuration file

Java class files (and source

files) for the servlets

CNT 4714: Servlets – Part 3 Page 13 Dr. Mark Llewellyn ©

A Closer Look at the web.xml File

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

version="2.4">

<!-- General description of your Web application -->

<display-name>

Servlet Technology

</display-name>

<description>

This is the Web application in which we will

demonstrate our JSP and Servlet examples.

</description>

The web-app element

defines the configuration

of each servlet in the Web

application and the servlet

mapping for each servlet.

The display-name element

specifies a name which can

be displayed to the server

administrator on which the

Web application is installed.

The description element

specifies a description of the

Web application that can also

be displayed to the server

administrator.

CNT 4714: Servlets – Part 3 Page 14 Dr. Mark Llewellyn ©

A Closer Look at the web.xml File

<!-- Servlet definitions -->

<servlet>

<servlet-name>welcome1</servlet-name>

<description>

A simple welcome servlet that handles an HTTP get request.

</description>

<servlet-class>

WelcomeServlet

</servlet-class>

</servlet>

<!-- Servlet mappings -->

<servlet-mapping>

<servlet-name>welcome1</servlet-name>

<url-pattern>/welcome1</url-pattern>

</servlet-mapping>

</web-app>

Element servlet describes a servlet.

There is one of these for each

servlet in the Web application.

Element servlet-name is the name

chosen for the servlet.

Element description describes

the servlet and can be displayed

to the server administrator.

Element server-class specifies the compiled servlet’s fully qualified path

name. In this case the servlet is defined by the class WelcomeServlet.

Element servlet-mapping specifies the servlet-

name and url-pattern elements. The URL pattern

helps the server determine which requests are

sent to the servlet (welcome1). Since this web

application will be installed as part of the

CNT4714 context root, the relative URL supplied

to the browser to invoke the servlet is

/CNT4714/welcome1.

CNT 4714: Servlets – Part 3 Page 15 Dr. Mark Llewellyn ©

Handling HTTP get Requests Containing Data

• When a requesting a document or resource from a Web server,

it is often the case that data needs to be supplied as part of the

request. The second servlet example in the previous set of
notes responds to an HTTP get request that contains the name

entered by the user. The servlet uses this name as part of the

response to the client.

• Parameters are passes as name-value pairs in a get request.

Within the source code for the second WelcomeServlet2 you

will find the following line (see next page):

String clientName = request.getParameter(“clientname");

Invoke request object’s

getParameter method

CNT 4714: Servlets – Part 3 Page 16 Dr. Mark Llewellyn ©

Invoke request object’s

getParameter method

CNT 4714: Servlets – Part 3 Page 17 Dr. Mark Llewellyn ©

Handling HTTP get Requests Containing Data
(cont.)

• The WelcomeServlet2.html document provides a form in which

the user can input their name into the text input element

clientname and click the Submit button to invoke the servlet.

• When the user clicks the Submit bitton, the values of the input

elements are placed in name-value pairs as part of the request to

the server.

• Notice in the screen shot on the next page that the Tomcat server

has appended ?clientname=Mark to the end of the action

URL. The ? separates the query string (i.e., the data passed as part

of the get request) from the rest of the URL in a get request.

The name-value pairs are passed with the name and value

separated by =. If there is more than one name-value pair, each

pair is separated by an &.

CNT 4714: Servlets – Part 3 Page 18 Dr. Mark Llewellyn ©

Handling HTTP get Requests Containing Data

Context root is /CNT4714

Servlet alias is welcome2

Form in WelcomeServlet2.html that specifies an

input whose type is “text” and whose name is

“clientname”

CNT 4714: Servlets – Part 3 Page 19 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 3 Page 20 Dr. Mark Llewellyn ©

Notice that the browser has appended

?firstname=Mark to the end of the action

URL when WelcomeServlet2 is invoked

Client directly types this URL.

Note: The same servlet could have been invoked directly by typing in directly to the browsers Address

or Location field. This is shown in the overlay below

CNT 4714: Servlets – Part 3 Page 21 Dr. Mark Llewellyn ©

Handling HTTP post Requests

• An HTTP post request is typically used to send data from an

HTML form to a server-side form handler that processes the

data. For example, when you respond to a Web-based survey, a
post request normally supplies the information you entered

into the form to the Web server.

• If you were to replace the doGet method in WelcomeServlet2

with a doPost method, nothing would change in the apparent

execution of the servlet with the exception that the values

passed to the server are not appended to the request URL.

• This is illustrated by WelcomeServlet3 which is exactly the
same as WelcomeServlet2 except that it uses the doPost

method. Notice how the URL differs between the two versions.

CNT 4714: Servlets – Part 3 Page 22 Dr. Mark Llewellyn ©

WelcomeServlet2 uses the get method to supply the data to the form whereas

WelcomeServlet3 uses the post method to do the same. Notice that the data is

appended to the URL when the get method is used but it is not appended to the

URL when the post method is used.

WelcomeServlet2 uses a get method.

WelcomeServlet3 uses a post method.

CNT 4714: Servlets – Part 3 Page 23 Dr. Mark Llewellyn ©

Modifications Necessary to web.xml File For

Handling Additional Servlets

• In addition to modifying our index.html (homepage) file

to include descriptors for launching the additional

WelcomeServlet2 and WelcomeServlet3 servlets, we also

need to modify the web.xml configuration file to register

these servlets with Tomcat.

• We will need to include servlet definitions and servlet

mappings for both WelcomeServlet2 and WelcomeServlet3.

• The additional statements that must be included in this file

are shown on the next slide.

• You must also include the Java class files for these servlets

in the classes folder.

CNT 4714: Servlets – Part 3 Page 24 Dr. Mark Llewellyn ©

<servlet>

<servlet-name>welcome2</servlet-name>

<description>

A more personal welcome servlet

</description>

<servlet-class>

WelcomeServlet2

</servlet-class>

</servlet>

<servlet>

<servlet-name>welcome3</servlet-name>

<description>

A more personal welcome serlvet - using a post action

</description>

<servlet-class>

WelcomeServlet3

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>welcome2</servlet-name>

<url-pattern>/welcome2</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>welcome3</servlet-name>

<url-pattern>/welcome3</url-pattern>

</servlet-mapping>

Servlet descriptions

Servlet

mappings

CNT 4714: Servlets – Part 3 Page 25 Dr. Mark Llewellyn ©

Redirecting Requests to Other Resources

• Sometimes it is useful to redirect a request to a different

resource. For example, a servlet’s job might be to determine

the type of the client’s browser and redirect the request to a

Web page that was designed specifically for that browser.

• The same technique is used when redirecting browsers to an

error page when the handling of a request fails.

• Shown on the next two pages is the source code for a

ReDirectionServlet (available on the course website)

which redirects the client to another resource selected from a

list of resources.

CNT 4714: Servlets – Part 3 Page 26 Dr. Mark Llewellyn ©

// Redirecting a client to a different Web page.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class ReDirectionServlet extends HttpServlet {

// process "get" request from client

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

String location = request.getParameter("page");

if (location != null)

if (location.equals("CNT 4714"))

response.sendRedirect("http://www.cs.ucf.edu/courses/cnt4714/spr2011");

else

if (location.equals("welcome1"))

response.sendRedirect("welcome1");

else

if (location.equals ("error"))

response.sendRedirect("error");

RedirectionServlet.java

sendRedirect is a method within the

HTTPServletResponse Interface. The

string parameter is utilized as the URL to

which the client’s request is redirected.

CNT 4714: Servlets – Part 3 Page 27 Dr. Mark Llewellyn ©

// code that executes only if this servlet does not redirect the user to another page

response.setContentType("text/html");

PrintWriter out = response.getWriter();

// start XHTML document

out.println("<?xml version = \"1.0\"?>");

out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +

"XHTML 1.0 Strict//EN\" \"http://www.w3.org" + "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");

out.println("<html xmlns = \"http://www.w3.org/1999/xhtml\">");

// head section of document

out.println("<head>");

out.println("<title>Invalid page</title>");

out.println("</head>");

// body section of document

out.println("<body>");

out.println("<h1>Invalid page requested</h1>");

out.println("<p><a href = " +

"\"RedirectionServlet.html\">");

out.println("Click here for more details</p>");

out.println("</body>");

// end XHTML document

out.println("</html>");

out.close(); // close stream to complete the page

}

}

CNT 4714: Servlets – Part 3 Page 28 Dr. Mark Llewellyn ©

ReDirectionServlet.html

CNT 4714: Servlets – Part 3 Page 29 Dr. Mark Llewellyn ©

The servlet and servlet-mapping Portions Of

web.xml Modified To Handle The

ReDirectionServlet

<servlet>

<servlet-name>redirect</servlet-name>

<description>

A redirection servlet.

</description>

<servlet-class>

ReDirectionServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>redirect</servlet-name>

<url-pattern>/redirect</url-pattern>

</servlet-mapping>

CNT 4714: Servlets – Part 3 Page 30 Dr. Mark Llewellyn ©

User clicks this link as

is redirected to the

servlet shown below.

CNT 4714: Servlets – Part 3 Page 31 Dr. Mark Llewellyn ©

This is the window that

appears when the user

selects the Intentional

error link from the

Redirection servlet.

Notice that the HTTP

Status is 404

